Principal Particulars 170k MkIII DFDE 2x2stage

Ship's name : LNG Carrier

Type of cargo : Methane (LNG)

Cargo containment system: Four (4) membrane cargo tanks according to the design of GTT

Mark III system which uses stainless steel (ASTM/ASIS

304Lcorrugation

Insulation : Reinforced PU foam panels,

Secondary Insulation Thickness: 0.170 m Primary Insulation Thickness: 0.100 m

Total Insulation Thickness: 0.270 (excluding mastic & hull)

Insulation Space Volume: 1,020 m3 occupied by N2

Boil off Rate : 0.15 % of full loaded cargo volume per day

Laden Condition = 3,977 kg/hour (98.5% tanks filling) Ballast Condition = 1,789 kg/hour (45 % of laden condition)

Overall Heat Capacity 195,290 MJ

Overall Heat Transfer Coefficient: 0.104 W/m2*K

: External Ambient Condition: IGC Code

Air Temperature: 45.0 C

Sea Water Temperature: 32.0 C

Aft Cofferdam steel plating temperature: 26.6 Frwd cofferdam steel plating temperature: 29.2 C Central cofferdam steel plating temperature: 2.7 C

Methane and Operating data Cargo temperature: - 161.5 C

Density: 425 kg/m3

Latent Heat of Vaporization: 511 kJ/kg

Tank Filling Ratio: 98.5 %

Classification (Fitness Cert.) Tanker Liquefied Gases - LNG Carrier

Maximum Pressure (MARVS) 25 kPaG,

Design Cargo Specific gravity up to 500kg/m3,

Minimum Temperature ó 163 C,

Maximum Specific Weight 500 kg/m3,

Ships Type 2G

Designed Criteria Use : Ambient air Temperature 5 C

: Ambient Water Temperature 0 C

The vessel, including her hull, machinery, equipment built under the survey of the Classification Society of the Bureau VERITAS and classes and registered as BV I *Hull, *Mach, unrestricted navigation, Liquefied Gas Carrier, *AUT-UMS, +VeriSTAR-HULL, SYS-NEQ-1 CLEANSHIP(C), INWATERSURVEY, MON-SHAFT

Length overall (LOA)		m	298.430	
Length between perpendiculars (LPP)		m	285.00	
Breadth Moulded		m	46.00	
Depth Moulded		m	26.80	
	Desi	gn (Moulded)	m	11.900
	Sum	mer (Ext.)	m	11.925
Draft	Scar	ntling Draft (Moulded)	m	13.000
	Lad	en (Arrival)	m	11.60
	Ball	ast (Departure)		9.45
Height above Keel			m	62.495
International Gross	tonna	ge	Rton	114,277
International Net to	nnage		Rton	34,283
Lightweight			ton	34,258
		Design (Moulded)	ton	87,165
Deadweight		Summer	ton	87,194
		Laden (Arrival)	ton	
Displacement		Design (Moulded)	ton	
		Summer	ton	
		Laden (Arrival)	ton	
Cargo capacity (100°	%)		m^3	173,242

FILLING LIMITS AND ALARM SETTINGS								
DESCRIPTION	CTK # 4	CTK # 3	CTK#2	CTK # 1	Total:			
100 % VOLUME m3	49,340.1 m3	49,340.1 m3	49,340.1 m3	25,222.0 m3	472 242 22			
100 % LEVEL m	28.90 m	28.90 m	28.90 m	28.90 m	173,242.3 m3			
99.5% VOLUME - ESD Activated (VHI Alarm)	49,093.4 m3	49,093.4 m3	49,093.4 m3	25,095.9 m3	470.070.4.0			
99.5% LEVEL - ESD Activated (VHI Alarm) VHI Tank Level Oo m	28.64 m	28.64 m	28.64 m	28.71 m	172,376.1 m3			
99.0% VOLUME - FILLING V/V CLOSE (HIHI ALARM) - TPS - 2	48,846.7 m3	48,846.7 m3	48,846.7 m3	24,969.8 m3	474 500 0 0			
99.0% LEVEL - FILLING VIVICLOSE (HIHI ALARM) - TPS - 2 HIHITANKLEVEL OF m	28.40 m	28.40 m	28.40 m	28.54 m	171,509.9 m3			
98.5% - Normal LOADED VOLUME m3	48,600.0 m3	48,600.0 m3	48,600.0 m3	24,843.7 m3	470.040.7			
98.5% - Normal LOADED LEVEL m	28.16 m	28.16 m	28.16 m	28.37 m	170,643.7 m3			
97.0% VOLUME (HI Tank Level ALARM) m3	47,859.9 m3	47,859.9 m3	47,859.9 m3	24,465.3 m3				
97.0% LEVEL (HI Tank Level ALARM) m	27.48 m	27.48 m	27.48 m	27.87 m	168,045.0 m3			

1CT	24,844 m3	28.37 m	98.50%
4CT	48,600 m3	28.16 m	98.50%
2CT	48,600 m3	28.16 m	98.50%
ЗСТ	48,600 m3	28.16 m	98.50%
	170,644 m3		

LOADING / FILLING RESTRICTIONS

		CTK 4		СТК 3		CTK 2		CTK 1				
CARGO TANK	m	m3	Fill ratio	m	m3	Fill ratio	m	m3	Fill ratio	m	m3	Fill ratio
70% High (UPPER) LIMIT	18.76 m	34,538 m3	70.00%	18.76 m	34,538 m3	70.00%	18.76 m	34,538 m3	70.00%	20.83 m	17,655 m3	70.00%
2.0 m (LOWER) LIMIT	2.00 m	3,103 m3	6.30%	2.00 m	3,103 m3	6.30%	2.00 m	3,103 m3	6.30%	2.00 m	1,268 m3	5.00%

Principal Particulars of Cargo Equipment

Main Cargo Pumps

Two cargo pumps are installed in each cargo tank (total 8 cargo pumps). The cargo pump are electric motor-driven, of the single-stage, centrifugal submerged types. The cargo pumps must be operated In LNG liquid and must not be operated when dry, as the pump bearings are lubricated by LNG drawn in by the pump. The cargo pumps are located at the bottom of the center pipe tower. The pump suctions are located approximately 75mm from the tank bottom and are protected by a suction screen.

Maker : Ebara International Corporation
No. of sets : Eight (8) total, Two (2) in each tank

Type : 12Ec-24; Vertical, centrifugal, submerged single stage

Liquid pumped : LNG (S.G-0.5)
Capacity rated flow : 17000m3/h
Discharge head rated : 155mth
Power required rated : 522.2KW
Electric Power Source : 6,600 V, 60 Hz

Rated Current : 62 A
Starting Current : 400 A
RPM rated : 1800
Starting Method : Soft Start

No. of stages : 1

Minimum Continuous Flow : 563 m3/h
Maximum Flow : 2,040 m3/h
Designed Pressure : 1.0 MPaG
Designed Temperature : - 163 C

Minimum Liquid for initial start-up from tank bottom : 2.0 m

Minimum Liquid for restarting from tank bottom : 0.70 m

Preset Opening of the pump discharge valve : 25 % (adjustable)

AURTO SEQ "START DISCHARGE" - Pump Set Point = 53 Amps and Discharge Valve Open app. 38 %

Protection

Over Current Relay : >62 A (instantaneous)
Low Current Relay : <40A ((instantaneous)

The Cargo pumps should not be re-started if the tank level is below approximately 2.0m. If the initial start fails, for a second attempt at pump starting, wait 17 minutes in order to avoid overheating of the motor windings.

The cargo pumps are primarily operated using AUTO SEQUENCE START controls, though can be operated manually if preferred.

Spray / Stripping Cargo Pumps

One spray pump is installed in each cargo tank (total 4 pumps). The spray pumps are electric motor-driven, of the two-stage, centrifugal submerged type (similar to main cargopumps). The spray pump must be operated In LNG liquid and must not be operated whendry as the pump bearings are lubricated by LNG drawn in by the pump.

Maker : Ebara International Corporation
No. of sets : Four (4) total, One (1) in each tank

Type : 2EC-092vertical, centrifugal, submerged single stage

Liquid pumped :LNG (S.G-0.5)
Capacity rated flow : 50m3/h
Discharge head rated : 145mth

Power required rated : 22.4 kW
Electric Power Source : 440 V
Rated Current : 42 A
Starting Current : 300 A
RPM rated : 3600
Efficiency : 54.7%

Starting Method : Direct on Line

No. of stages : 2

Minimum Flow : 20 m3/hr
Designed Pressure : 1.0 MPaG
Designed Temperature : 163 C

Minimum Liquid for initial start up from tank bottom : 1.30 Minimum Liquid ffor restarting from tank bottom : 0.59

Preset Opening of the pump discharge valve : 15 % (adjustable)

Protection

Over Current Relay :>30 A(instantaneous)
Low Current Relay :<50 A((instantaneous)

The spray pumps are located at the bottom of the center pipe tower. The pump suctions are located approximately 25mm from the tank bottom and are protected by a suction screen.

Emergency Cargo Pump

Maker : Ebara International Corporation

No. of sets : One (1)

Type : 8ECR-12, Retractable, vertical, centrifugal, submerged, single stage

Rated flow : 550m3/h at 155mth

Minimum flow : 220m3/h (continuous)

Power required : 223.8 kW

Electric Power Source : 440 V

Rated Current : 355 A

Starting Current : 2,500 A

Starting Method : Direct on Line

No. of stages : 1

Minimum Liquid for initial start up from tank bottom : 1.72 Minimum Liquid ffor restarting from tank bottom : 0.97

Ballast Pumps

Three electric driven ballast pumps are provided together with a small stripping eductor. The Water Spray pump is used to provide the drive for the eductor. The system is designed that the vessel can be ballasted/de-ballasted within 12 hrs

Maker : Shinko Industries

No. of esets : 3

Type : Vertical centrifugal, self-priming

Capacity : 3,000 m₃/h x 30mth

Rotation : Clockwise viewed from the coupling

Ballast Stripping Eductors

No. of sets : 1

Type : Sea water driven by Water Pump from Engine Room

Capacity : 300 m3/h Driving Pressure : 400 kPa

Inert Gas Generator

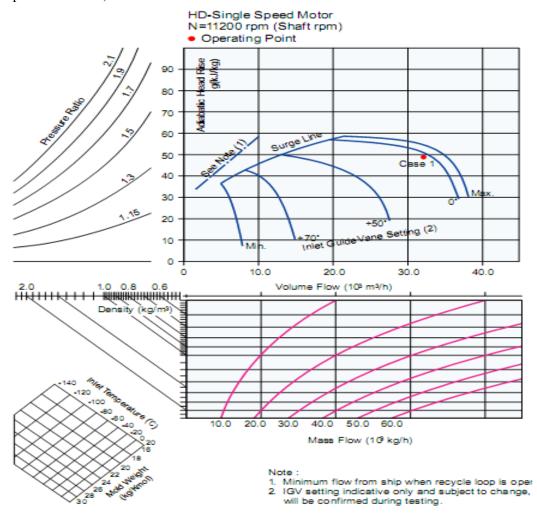
No. of sets : One (1)

Type : Gas Oil Fires

Inert gas capacity : 14,000 Nm3/hDischarge pressure : 25 kPa (G)Temperature Average after generator : $+17_{\circ}\text{C}$ Dewpoint after expansion Maximum : 645_{\circ}C

to atmospheric pressure

Cooling Water Supply by Water Ballast Pump


Dry inert gas composition is as follows:

Nitrogen N2: : balance

H/D - High Duty Compressors

Specification				
Manufacturer	Cryostar			
Model	CM 400/55			
Туре	Centrifugal, Single stage, Fixed speed			
	with adjustable guide vanes			
No. of Sets	2			
Volume flow	32000 m ³ /h			
Capacity (Mass flow)	48818 kg/h			
Inlet pressure	103 kPaA			
Outlet pressure	196 kPaA			
Inlet temperature	-140°C			
Outlet temperature	-111°C			
Shaft speed	11200 rpm			
Motor speed	3580 rpm			
Rated motor power	6600 V, 900kW			

HD compressor Design flow rate based on \tilde{o} Total calculated Maximum displaced vapor volume during Loading operationö such that individual HD compressor rating will take 60 % of such maximum (both HD compressor = 120 %)

HD Compressor usage:

- 1. NG Return to Shore during LNG Loading
- 2. NG Displacement & Venting for Warming Up --- PRE-DOCKING
- 3. NG Return during initial Cooling ó Down --- POST DOCKING
- 4. Inert Gas Return during Gas Up Operation (if required by Terminal) --- POST DOCKING

The Following conditions trip the compressors:

- ➤ ESDS
- ➤ Differential pressure: vapour header / atmospheric pressure = 0.3 Kpa
- ➤ Differential pressure: vapour header / IBS pressure header = 0.0 Kpa
- ➤ Tank No. 1, 2, 3, 4 ó very high liquid level
- ➤ Electric Power Failure
- > Ventilation flow failure in electric motor room

L/D - Low Duty Compressor

Specification						
Manufacturer	Cryostar					
Model	CM 2-200					
Туре	Centrifugal, Two stage, Dual speed with variable					
	diffuser vans					
No. of Sets	2					

Performance Data		Design	Laden 4500	Laden 4000	Ballast 1500	Ballast 1900	Min. flow
Volume flow	m³/h	4600	4500	4000	1550	1900	1200
Capacity (Mass flow)	kg/h	7084	6930	5271	2387	2503	1848
Inlet pressure	kPaA	103	103	103	103	103	103
Outlet pressure	kPaA	650	650	650	650	650	650
Inlet temperature	°C	-120	-120	-120	-120	-120	-120
Outlet temperature	°C	69.5	69.5	41.8	85.8	50.7	91.5
Efficiency	%	47	47	53	43	50	42
Shaft speed	rpm	29775	29775	29775	29775	29775	29775
Shaft power	kW	658	644	500	243	252	194
Coupling power	kW	738	724	580	323	332	274
Driver system		Two-speed electric motor					

The compressor capacity control is as follows;

The capacity of the L/D compressor is controlled by adjusting the Variable Diffuser Vanes

ÉThe stable operating range of the compressor is restricted by the surge limit.

Safety Device of L/D compressor

(1)	L.O. Inlet pressure low	78 kPa
(2)	L.O. Inlet temp.high	60 °C
(3)	Rotor excess vibration	45 m
(4)	Discharge gas temp.high	100°C
(5)	Bearing temp.high	75°C
(6)	Bulkhead seal oil temp. high	80°C
(7)	ESDS active	Active

The Following conditions trip the compressors:

- > ESDS
- ➤ Differential pressure: vapour header / atmospheric pressure = 0.3 Kpa
- ➤ Differential pressure: vapour header / IBS pressure header = 0.0 Kpa
- > Tank No. 1, 2, 3, 4 ó very high liquid level
- ➤ Electric Power Failure
- > Ventilation flow failure in electric motor room

LNG Vaporiser

Manufacturer: Cryostar

Model: 65-UT-38/34-5.9 Type: Shell & Tube

Tube Side		Operating Case					
(Process Fluid)	Unit	Vapour purge	LNG discharge	Em'cy Forcing	Em'cy Forcing	N2 ref only	
Process fluid		Methane	Methane	Methane	Methane	Nitrogen	
Mass Flow	kg/h	13000	24500	7200	6500	18396	
Inlet Volume Flow	m³/h	29	54	16	14	23	
Outlet Volume Flow	m³/h	14973	12809	964	871	12150	
Inlet Temperature	°C		-1	63		-196	
Outlet Temperature (uncontroller	°C	29	-20	66	72	45	
Outlet Temperature (controller)	°C	20	-140	-100	-100	20	
Inlet Pressure	kPa	300	300	800	800	200	
Outlet Pressure	kPa						
Pressure Drop (Calculated)	kPa	30	30	560	560	30	
Heat Exchange (Actual)	kW	3351	3833	1309	1182	2270	
Inlet Temperature	°C	179					
Outlet Temperature	°C	174					
Inlet Pressure	kPa	900					
Outlet Pressure	kPa	900					

LNG Vaporiser alarm set points are as follows:

 $\begin{array}{ll} \text{\'EGas outlet temperature high.:.} & : 80^{\circ}\text{C} \\ \text{\'EGas outlet temperature low :} & : -70^{\circ}\text{C} \\ \text{\'EDrain pot level high :} & : 195\text{mm} \end{array}$

Forcing Vaporiser

Specification

Manufacturer: Cryostar

Model: 34-UT-25/21-3.6 Type: Shell & Tube

Tube Side	Unit	Operatir	ng Case
(Process Fluid)	Unit	Sizing case	Forcing
Process fluid		Methane	Methane
Mass Flow	kg/h	6500	6500
Inlet Volume Flow	m³/h	14	14
Outlet Volume Flow	m³/h	1173	871
Inlet Temperature	°C	-163	-163
Outlet Temperature (uncontroller)	°C	-27	-27
Outlet Temperature (controller)	°C	-40	-100
Inlet Pressure	kPa	800	800
Outlet Pressure	kPa	560	560
Pressure Drop (Calculated)	kPa	112	112
Heat Exchange (Actual)	kW	1428	1182

Shell Side (Saturated	11-14	Operating Case			
Steam)	Unit	Sizing case	Forcing		
Steam Consumption	kg/h	2549	2108		
Inlet Temperature	°C	179	179		
Outlet Temperature	°C	174	174		
Inlet Pressure	kPa	900	900		
Outlet Pressure	kPa	900	900		

Gas Heater (boil off / Warm up heater)

Specification

Manufacturer: Cryostar

Model: 65-UT-38/34-4.4
Type: Shell & Tube
No. Of sets: 2

Performance		Design	Beginning	End	BOG	BOG				
data			Warm-up	Warm-up	(laden)	(ballast)				
TUBE side (process fluid)										
Process fluid		Methane	Methane	Methane	Methane	Methane				
Mass flow	Kg/h	18600	21400	11700	6500	7200				
Inlet volume flow	M³/h	8697	8913	8161	884	979				
Outlet volume flow	M ² /h	27961	21862	12415	1524	1688				
Inlet temperature	°C	-90	-110	o	-100	-100				
Outlet temperature (uncontrolled)	°C	82	67	130	111	108				
Outlet temperature (controlled)	°C	80	-	80	40	40				
Supply inlet pressure	кРа	100	160	100	550	550				
System outlet pressure	kРа									
Pressure drop, calculated	кРа	20	70	70	550	550				
Heat exchange	kW	2002	2396	593	514	570				
SHELL side (S	Saturat	ed steam)								
Steam consumption	Kg/h	3572	4275	1057	918	1017				
Inlet temperature	ô	179	-	-	-	-				
Outlet temperature	ů	174 appx.	-	-	-	-				
Inlet pressure	kPa	900	-	1	-	-				
Outlet pressure	kPa	900	-	-	-	-				

Nitrogen Gas (N2) Generator

Plant Specific Data:

Tium Specific Data.				
Description	Unit	Min.	Design	Max.
No. of Generator Units			2	
Ambient Temp.	ပ္	10	45	50
Relative humidity at				
ambient	%RH		60	80
temperature				
Feed Air Supply Capacity	Nm³/h		450	
Feed Air Temp.	ပ္	20	50	65

Service:

Description	Unit	Min.	Design	Max.
Product Flow Rate	Nm³/h		125	149
Product Purity	Vol%O ₂		<3	3.0
Product Dewpoint @ atm. pressure	°C	<-70	<-65	<-60
Delivery Pressure	kPa	500	900	1000
Module Outlet Temperature	°C	40	45	50

Feed Air Requirement:

Description	Unit	Min.	Design	Max.
Feed Air Flow Rate	Nm³/h		380	470
Module Inlet Pressure	kPa	1000	1050	1200
Module Inlet Temperature	°C	25	60	65
Particle Size	micron		0.01	
Particle Concentration	mg/m ³		0.1	
Oil Content	mg/m ³		<0.01	
Dew Point at 700 kPa	°C		5	

Electric Power Requirement:

Description	Unit	Design		
Voltage (i)	V/Hz/ph	440 / 60 / 3		
Feed Air Compressor	kW/(A)	5		
Voltage (ii)	V/Hz/ph	220 / 60 / 1		
Control panel(s)	kW	2		

Nitrogen Buffer Tank

No. of sets : 1 Capacity : 24m3

Working pressure : 300/800 kPa (min/max)

Start supply to tank : 300KPa, Stop supply to tank : 800KPa.

Nitrogen Generation Alarms and Shutdowns

Air heater high temperature (System shut down) : 200°C
Feed air high high temp. (System shut down) : 80°C
Feed air temperature high : 65°C

Dew point level high : -60°C

Oxygen content high : 3.5%

Oxygen content high high : 4.0%

Feed air pressure low : 700kPa g.

Nitrogen flow high : 103Nm3/h

Nitrogen buffer tank pressure low : 300 kPa g.

Nitrogen buffer tank pressure high : 800 kPa g.

Differential pressure high : 0.08kPa g.

Barrier Space Header and IBS/IS Alarms

No.1 cargo tank IBS pressure

No.1 cargo tank IBS pressure high/low : 1.3 / 0.2 kPaNo.1 cargo tank IS/IBS differential pressure h/l : 1.2 / 0.0 kPaNo.1 cargo tank IS pressure high/low : 2.5 / 0.3 kPa

IS/IBS header pressure : 50 kPa

IS/IBS header pressure high / low : 70 / 20 kPa

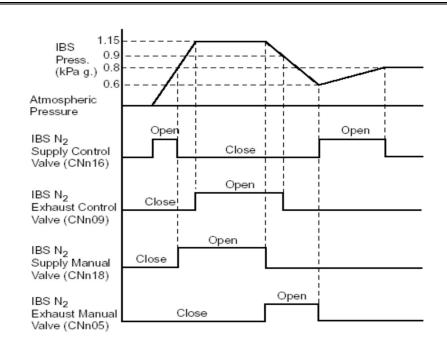
Nitrogen to barrier space total flow

No.2 cargo tank IBS pressure

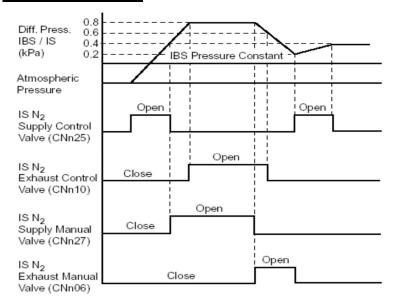
No.2 cargo tank IBS pressure high/low : 1.3 / 0.2 kPa No.2 cargo tank IS/IBS differential pressure h/l : 1.2 / 0.0 kPa

No.2 cargo tank IS pressure high/low : 2.5 / 0.3 kPa

No.3 cargo tank IBS pressure


No.3 cargo tank IBS pressure high/low : 1.3 / 0.2 kPaNo.3 cargo tank IS/IBS differential pressure h/l : 1.2 / 0.0 kPa

No.3 cargo tank IS pressure high/low : 2.5 / 0.3 kPa


No.4 cargo tank IBS pressure

No.4 cargo tank IBS pressure high/low : 1.3 / 0.2 kPaNo.4 cargo tank IS/IBS differential pressure h/l : 1.2 / 0.0 kPaNo.4 cargo tank IS pressure high/low : 2.5 / 0.3 kPa

IBS Pressure Control

IS Pressure Control

Summary of Custody Transfer Measuring System

Tank Level Measurement System

Primary Unit : Radar

Number : Four (4) - One (1) per Tank

Manufacturer : SAAB Accuracy : +- 7,5 mm

Displays : 1 x 23 inch Instant Level Monitor

: 1 x 23 inch CTS Monitor

: 1 x 50ö Plasma Screen display units

Secondary Unit : Float Level Gauges

Number : Four (4) - One (1) per Tank

Manufacturer : Whessoe
Type : Figure 3304
Quantity : 4 (1 per tank)
Accuracy : ±7.5mm
Repeatability : ±4.0mm
Transmitter type : 2047MT

Independent High Level Alarm System

Manufacturer : Omicron

Model : OAS-5

Sensor : HHL 8903A

Number : 4

Accuracy

Overfill Protection Device

Manufacturer : Omicron

Number : Eight (8) - Two (2) float switches per Tank

: 1 @ 99.5 % Tank Volume : 1 @ 99.0 % Tank Volume : ±5.0mm (cargo Density 0.45)

Temperature Measuring Devices

Manufacturer : SAAB

Number : One (1) set per Tank as follows

: Top 2 pcs: 95 % height 2 pcs: 70 % height 2 pcs : 50 % height 2 pcs: 25 % height 2 pcs: Bottom 2 pcs

Type : PT-100 resistance thermometers Accuracy : $\pm 0.2^{\circ}$ C from $\pm 0.3^{\circ}$ C to $\pm 0.3^{\circ}$ C from $\pm 0.3^{\circ}$ C from

 $\pm 0.5^{\circ}$ C from 6 120°C to + 80°C

Pressure Measuring Devices

Manufacturer : SAAB

Number : One (1) unit per Tank located inside Radar Housing

Type : Electronic pressure transmitters

Spec : Gauge pressure measurement (-200 to + 400 mbar g / -20 KPa to + 40 KPa)

Accuracy : ± 0.5 % of range (i.e. +- 3 mbar for LNG)

Trim / List gauge

Number : One (1) unit Type : Electric Manufacturer : Utsuki Keiki

Emergency Shutdown System (ESD)

Ship / Shore ESD link system

- Pneumatic System
- Optical Fibre System
- Electric System

The ESDS is activated by the following conditions.

• Manual activation

- Manual switches are provided on the cargo control console,
- ➤ fire safety &control center,
- > manifold (port &stbd),
- > each tank dome
- > cargo motor room and
- Cargo machine room.

• Fire

- Melting plugs designed to melt at a temperature between 98°C and 100°C are provided at each
- > tank dome area,
- > shore connections (port &stbd) and
- > cargo machinery room.

• Very high level in cargo tank

The system is activated when the level in any one of cargo tank reaches 99.5% vol.

• Power failure

- ➤ The system is activated in the event of power failure,
- > such as black out or
- > loss of hydraulic pressure in the cargo valve remote control system.

• Actuation of ESDS from shore.

- > Following connections can be used between the ship and the shore
- Fiber optic.
- > electric (intrinsically safe type) and
- > pneumatic lines

• Actions when ESD is activated

ÉIf operational the following are stopped:

- Cargo compressors
- Cargo Pumps
- > Spray Pumps
- ➤ Inert Gas Plant

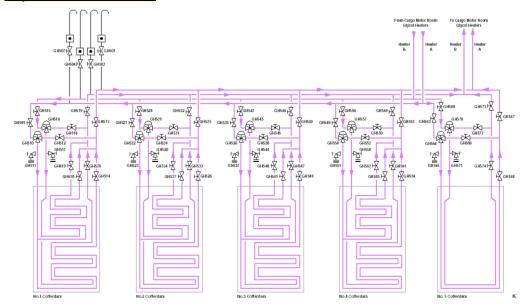
ÉIf open the following are closed:

- > Tank filling valve
- ➤ Manifold ESD valve
- Fuel Gas Supply to boiler valve (BOG)

Note: On some vessels, the shutting of the tank filling valve may not be included within the ESD actions but will close as part of the 'Tank Protection System'.

ESD1/ESD2

In some terminals two levels of ESD activation may be implemented.


ÉESD1

When activated this will shutdown shipboard equipment but may leave valves in the open condition. ÉESD2

This is a full shutdown situation, with all equipment and valves on vessel being stopped and closed, equipment within the shore plant stopped and valves closed on

Other Systems on board

Glycol Steam Heaters

No. of sets : 2

The maximum heating condition is determined by the following extreme operating conditions:-

External air temperature : -18° C Sea water temperature : 0° C

Capacity : 30m3/h of glycol/water

Inlet temperature : 77.5°C

Outlet temperature : 90°C (maximum)

Heating steam : 700kPa

Glycol Electric Heater

Manufacturer : Aset No. of set : 2

Type : TB160+20E

Capacity : 30m3/h of glycol/water

Outlet temperature : 70°C

Heating : 180kW total (80kW, 40kW, 20kW, 20kW + 20kW in reserve elements):

440V Tri 60Hz

Operating pressure : 450kPa

Glycol Water Circulating Pump

Manufacturer : Teikoku Industries

No. of sets : 2

Type : Vertical centrifugal Capacity : $30m_3/h$ at 30mth Motor : 7.5 kW at 1,800 rpm

Side Trunk Exhaust Fans

Manufacturer : Hi-Pres Korea Co. Ltd

Type : *MNA-1400/578*

Quantity : 2

Air volume : 73,500m₃/h

Electric Motor

Type : EC30 225M6

Pole : 6
Power : 30.0kW
Revolutions : 1,182 rpm
Rating current : 55.0A

Pipe Duct Keel Exhaust Fan

Manufacturer : Hi-Pres Korea Co. Ltd

Type : MNA-1000/410

Quantity : 1

Electric Motor

Type : EC30 180M4

Pole : 4

Power : 18.5kW

Portable Water-Driven Gas Freeing Fan

Manufacturer : Dasic Marine Ltd.

Type : Jetfan 125

Quantity : 2

Fixed Gas Sampling and Gas Detection Systems

Manufacturer : Consilium Marine AB

Location : CCR System : Salwico Model : SW2020

Manufacturer : Consilium Marine AB

Location : EER Model : GS3000

Cargo Tank pressure protection

Vent mast No. 1 – "AUTO" Valve setting

Opening pressure : 23 kPa(G) Closing pressure : 21 kPA (G)

Cargo Tank Relief Valves

Cargo Tanks:

Manufacturer : Fukui Seisakusho

Type : Pilot Operated

Model : PSL-MD13-131-NS1(B)

No. of units : 8 No. per tank : 2

Operated pressure : 25 kPaG Open, and 22kPaG close

Capacity : 27,630 Nm2/h

Primary Interbarrier Space

Manufacturer : Fukui Seisakusho Type : Pilot Operated

Model : PSL-MD13-131-S1(B)

No. of units : 8 No. per tank : 2

Operated pressure : 3 kPa G Open, and 1.8 kPaG close

Capacity : 409 Nm2/h

Secondary Interbarrier Space

Manufacturer : Fukui Seisakusho Type : Pilot Operated

Model : PSL-MD13-131-S1(B)

No. of units : 8 No. per tank : 2

Operated pressure : 3.5 kPa G Open, and 2.1 kPaG close

Capacity : 449 Nm2/h

No. 1 HI Tank Pr HIHI Tank Pr LO Tank Pr LOLO Tank pr HI Tank Level HIHI Tank Level	000000	22 kPa (G) 25 kPa (G) 1 kPa (G) Alarm 0 kPa(G) ESD 97 % 99 %
No. 2 HI Tank Pr HIHI Tank Pr LO Tank Pr LOLO Tank pr HI Tank Level HIHI Tank Level	000000	22 kPa (G) 25 kPa (G) 1 kPa (G) Alarm 0 kPa(G) - ESD 97 % 99 %
No. 3 HI Tank Pr HIHI Tank Pr LO Tank Pr LOLO Tank pr HI Tank Level HIHI Tank Level	000000	22 kPa (G) 25 kPa (G) 1 kPa (G)-Alarm 0 kPa(G)-ESD 97 % 99 %
No. 4 HI Tank Pr HIHI Tank Pr LO Tank Pr LOLO Tank pr HI Tank Level HIHI Tank Level	000000	22 kPa (G) 25 kPa (G) 1 kPa (G)-Alarm 0 kPa(G)-ESD 97 % 99 %

Rising (kPa)	Falling (kPa)	Alarm	Location	Action
25			Two per tank	Pressure relief valves open
23			Vapour main	Open forward vent valve 100%
22		Ī	Each cargo tank	Close spray valves (Spray pump is not stopped because it may be required for the NBO spray cooler)
	21		Vapour main	Close forward vent valve
20		нн	Vapour main	Trip LNG and forcing vaporisers
20		н	Each cargo tank	
19		н	Vapour main	
18 ballast 15 laden		Pre H	Vapour main	Alarm informs operator that he has to: Increase the engine load (if possible) or Start the GCU (if GCU control is not in GCU mode)
				Normal operating zone BOG consumption controlled by: LD compressor if FV running Gas engine load if FV not running
	6	Pre L	Vapour main	Alarm informs operator that he has to start the forcing vaporiser (gas only mode only)
5			Vapour main	Reset MDO backup
	4	L	Vapour main	MDO backup (some engines change to MDO)
	3	L	Each cargo tank	Pump start interlock
	2	LL	Vapour main	Trip LD compressors Close master gas valves for MDO boost up
	7	LL	Each cargo tank	TPS1: Shut down of tank cargo pumps (main em'cy and spray), HD compressors and tank spray valves
	0.3	VL	Vapour main	ESD
	-1		Two per tank	Vacuum relief valves open

Principal Particulars of Machinery

Propulsion Motor	Type / Units	Electric / 2 units	
	MCO	14520 kW e/o	
	NOR	14520 kw e/o	
	D/G	2 units Wartsila 12V50DF	
Generator	D/G	2 units Wartsila 9L50DF	
	Emergency D/G	740 kW x 1 Set	
Service	Vs (at dd)	19.7 knots	
Speed	Vs (at Ballast)	20.3 knots	
Propeller	Туре	5 blades NACA section	
	Dia / Pitch	8.60 m/0.853	